Â鶹ÊÓƵ

Close
9/9/16

Adapting Iceland's hydropower system to a changing climate

Climate change is already having a significant impact on the world as we know it. Rising global temperatures are accelerating glacial melting around the world. This causes changes in the operational regime of hydroelectric stations that are fed by glacial meltwaters. As a result, we must adapt our hydropower projects and systems to new and changing conditions.

Glacier in Iceland

In watersheds fed by large glaciers, climate change is expected to accelerate glacial melting and increase flow rates. On the other hand, in watersheds fed by glaciers that have already lost significant mass, flow rates may decrease.

In some cases, the existing hydropower resources are already resilient enough to cope with changes in flow rates, water availability and electricity demand, if these issues are addressed with careful management strategies.

In other cases, however, changes in management practices will not be enough. For example, a common problem could be that the storage capacity of the reservoir and/or installed capacity of the plant are too small to handle significantly larger volumes of water.

In these cases, asset modifications are required. However, to date, only a few companies around the world have justified asset modifications of this type to take advantage of the opportunities or to mitigate the risks associated with climate change.

Iceland as a case study

Iceland generates both electricity and heating from a 100 per cent renewable energy system. This was achieved through a planned transition from fossil fuels over the past half century.

Landsvirkjun, Iceland’s national power company, has been studying the effects of climate change on flows in Iceland for the last 15 years. Since 2002, Landsvirkjun has been involved in research on the impacts of climate change in the Nordic countries in collaboration with a number of companies, institutions and researchers.

In 2010, Landsvirkjun began to use climate-adjusted historical records to understand current climate conditions and project future climate conditions. Combining estimates of historical temperature and precipitation tends with projected future climate trends and the future shape of the Icelandic glaciers, Landsvirkjun created different sets of flow scenarios for the current period, and for future periods up to 2050.

The flow scenarios were created by calibrating conceptual precipitation–runoff models with historical records. The scenarios are updated every five years using the latest hydrological models and climate scenarios.

Let’s consider the 2010–2015 scenario, which was created in 2010 for operational use. In this scenario, not only did the flow rate of certain glacial rivers increase, but the seasonal distribution of flows was also significantly altered.

The current power system was able to utilise 85 per cent of the increased flow by raising the annual generating capacity by 8 per cent. This was achieved through modified reservoir management strategies.

Climate change mitigation and adaptation have to go hand in hand. By building resilience into Iceland’s national power system, it can continue to provide clean and renewable energy, mitigating greenhouse-gas emissions."

Looking at the future scenarios up to 2050, the volume of the inflows will increase by an additional 15 per cent with respect to 2010. The existing power system can only utilise 30 per cent of that increase. The rest is expected to be discharged through spillways.

This is because the existing power system is already seeing higher utilisation than was expected at the time these stations were designed. The installed capacity of the existing system and reservoir storage will both need to be increased to make better use of the higher flow rates.

After 2080 flows will start to decrease again due to smaller glaciers and by 2200 glaciers are expected to have disappeared. Thus the system will rely on precipitation events with more even seasonal distribution than today’s short glacial melting season.

Lessons learned

Today, the issue of climate change is a matter of great importance to Landsvirkjun and research on climate change is an intrinsic part of our operations. It took time to build this awareness at the company, but the results are important. Studying climate change gives us the information which we need to make sound decisions on future investments.

Now, the design of our future power projects, including refurbishments and capacity increases, takes into account the expected increase in flow rates. For each project, we look at the expected flow increase for up to 20 years into the future, and we also take into account that further capacity increases may be required in the future.

For example, a decision has been made to expand the 270 MW Búrfell hydropower project’s installed capacity by 100 MW, with a design which would also facilitate a further 40 MW in additions in the future.

Climate change mitigation and adaptation have to go hand in hand. By building resilience into Iceland’s national power system, it can continue to provide clean and renewable energy, mitigating greenhouse-gas emissions.

About 77 per cent of all electricity generated in Iceland goes to power intensive industries. This makes Iceland the largest generator of electricity in the world per capita, even though more than 90 per cent of space heating utilises geothermal resources directly.

Since the electricity in Iceland is generated 100 per cent from renewable sources, it can be argued that Iceland is mitigating greenhouse-gas emissions that would occur if the power intensive industries were located elsewhere, in areas where electricity is generated from thermal sources.

This is why it is important to adapt to a changing climate, and take advantage of opportunities for increased power generation. Through combined effort, where dependence on fossil fuels is reduced, some of the expected climate change impacts can be mitigated.

This article was based on a policy brief, Energy in Iceland: adaptation to climate change, published by the United Nations University Institute for Integrated Management of Material Fluxes and Resources (UNU-FLORES). You can download this publication from the UNU-FLORES website.